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Introduction

Manganites: known for the colossal magnetoresistance 
effect (CMR). (Chabara et al., APL 63, 1990 (1993); Helmolt et al., 
PRL 71, 2331 (1993); S. Jin et al., Science 1994)

• Metal-insulator transition:        
high T-insulator; low T-metal

• CMR occurs near 
ferromagnetic transition Tc
as well as insulator to metal 
transition

• CMR occurs in high 
magnetic fields

(La,Ca)MnO3



Broad applications of GMR effect



Reason for CMR

⎯ Metal-insulator 
transition temperature is 
shifted by magnetic fields

Y. Tokura



Crystal and electronic structure

La1-xCaxMnO3

Undoped LaMnO3

Mn3+ : has 4 d-electrons

Jahn-Teller 
distortion

Hund’s rule: spin alignment

Mn3+- Mn3+: 
superexchange, AF



Doping and double exchange

Doping creates Mn3+/Mn4+ mixture
→Double exchange interaction

charge transfer results in FM

• undoped, superexchange, 
AF insulator

• doped to certain level, 
double exchange dominates, 
FM metal

La1-xCaxMnO3

Effective Hopping t ~cos(θ/2)

Mn3+ Mn4+



Phase diagram

AF: antiferromagnetic (more 
than one form)

CAF: canted AF

FI: ferromagnetic insulator

FM: ferromagnetic metal

CO: charge ordering phase

S. Choeng, Rutgers



Doping and electronic band structure

Two key parameters in the 
band structure (single 
electron band):

Band filling and band width

Doping element Sr, Ca, Ba, Pb…

⇒ carrier concentration

Doping elements La, Pr, Nd, Sm… ⇒ band width

Ionic radii of the dopant (tolerance factor)

⇒lattice distortion from cubic and bond angle

⇒ electronic band structure



Charge and Orbital ordering

• Collective Jahn-Teller 
effect

• Spin order
• Strong electron 

correlation: charge order
• Intersite exchange 

between eg orbitals

Y. Tokura

X=1/2



Lattice, spin, and charge degree of freedom are all 
strongly coupled.

Or one view: multicritical feature.

Competing interactions

• superexchange, AF

• double exchange (superexchange), FM

• electron-electron interaction, charge order

• Jahn-Teller and intersite orbital interaction

• electron-lattice (mainly through Jahn-Teller 
phonon)



Strong coupling of lattice, spin, and 
charge



Long range and local ordering: phase 
separation scenario

• Doping of different elements on A site causes random 
distribution of ion of different radii: a form of disorder

• Complete ordered distribution of dopant: phase 
fluctuation

Result:
Electronic phase 
separation.



Our work

Introducing lattice distortion
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Sample Structures

Sample: Pr2/3Sr1/3MnO3 (LCMO, LSMO) film  d ~50 - 150 Å
Lattice parameters: ~ 3.856 Å
Substrates:

SrTiO3 (STO) (100), a=3.90 Å
NdGaO3 (NGO) (110), a~3.85 Å, b~3.86 Å
LaAlO3 (LAO) (100), a=3.79 Å



Film Preparation
• Method: pulsed laser deposition (PLD), max E ~1J/pulse, 20ns

Structures

Thin films are coherently strained up to ~ 40 nm on SrTiO3 substrate.

And up to ~ 150 nm on LAO substrate.



Cross section view



LowLow--field MR as a function of fieldfield MR as a function of field

MR > 1000 %  (comparing largest GMR ~ 
150 % in metallic multilayers)
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LowLow--field MR hysteresisfield MR hysteresis
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Comparison for different strains
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Strain Effect on LFMR
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MFM domain image
LSMO/LAO 1500 Å, ZFC, 5 µ x 5 µ scan: 

Domain width decreases with thickness. 

Domain stripes can be aligned with an in-plan field.
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Discussion
• It is known theoretically and 

experimentally, magnetic 
domain wall resistance is 
normally negligible 
(Cabrera and Falicov,1974)

Bloch or Neel wall

• Only when Fermi wavelength 
(scattering length) is larger than 
the wall width, spin reflection 
(resistance) can occur. 

This is not possible for manganites since mean free path is ~ A



Conventional ferromagnet
• Largest reported in Co film with stripe domain, DWR ~8% 

(Viret, PRL, 2001)
• Theory based on majority and minority channel 

mixing+impurity scattering (Zhang and Levy 1997)

This model cannot be applied directly to manganites as 
double exchange prohibits mixing. Our DWR is too large 
to be explained.

Double exchange model

• Anisotropy energy k ~ 1.5 mev/nm2, exchange constant J ~ 2.5 mev

⇒ Domain wall width ~ 8 nm (20 atoms)

RDW/R ~ 1/cos(θ/2) ~ 1.003, DWR ~ 0.3 % (P. Littlewood et al., JAP, 1999)

Cannot explain the result



Possible explanation
Mathur and Littlewood (2001): phase separation in strained 

samples (self organized structures).

D. Golosov (PRB 67, 064404 (2003) calculated domain wall in 
double exchange system,  suggested 3 types of domain walls, 
Block, abrupt, and stripe walls, and our sample may have 
stripe wall.

Stripe wall: domains are separated by an AF insulating phase 
(charge ordering phase) 

M     I    M     I     M     I    M

Effectively self organized  phase



Reason for large DWMR:
• Spin polarized tunneling across the stripe walls
• or melting of charge ordering phase when the domains are 

aligned

Manganites are half 
metal p ~ 1

Therefore largest TMR 
is expected.

tunneling



DWR for different doping
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Large DWR is observed in compressive strained PSMO thin 
films, and the DWMR is larger for smaller Sr doping x. For 
x=0.2, DWMR~3000% !



Nano-bridges

• To understand the observed 
large LFMR and DWR, 
measurements across a small 
number of domain walls are 
necessary.

• Sharp switching of MR may 
be obtained in small size 
sample which contains a few 
domains.

500 nm

5 µm



Discussion

• Manganite nanostructures maintain the LFMR 
and DWR properties, but show nonlinear I-V 
behaviors;

• Nonlinear I-V curves can be fitted very well by 
Simmons tunneling model;

• There are internal phase separation in the 
sample as well as at the domain walls;

• The reduced tunneling barrier height in the 
magnetic field may indicate the melting of the 
AFM phase at the domain wall in the sample.



Anisotropic magnetoresistance

• Tool to probe intrinsic anisotropic energy
• To study spin-orbital coupling
• Used in sensors

In manganite single crystals, AMR 
(crystalline) is negligible.



Summary

• Large low field magnetoresistance in compressively 
strained ultrathin films and nanostructures with 
unconventional domain walls (possibly stripe walls).

• Very large anisotropic magnetoresistance associated 
with Jahn-Teller type lattice distortion.

• Small change in lattice can result in dramatic changes in 
magnetic and transport properties.


