Strain-induced anomalous magnetoresistance effect in ultrathin manganite films and nanostructures

Qi Li Pennsylvania State University Department of Physics University Park, PA 16802

Collaborators:

- Y. F. Hu (currently BNL)
- H.S. Wang (currently NRL)
- E. Wertz
- Beth Dickey (Materials Science)
- X. Wu and M. Rzchowski (Wisconsin)
- K. Liu and C. L. Chien (Johns Hopkins)
- I. MacLaren and Z.L.Wang (Georgia Tech.)
- Y. H. Ren (NYU) and G. Luepker (W-M)
- R. Merlin (Michigan)

Outline

- **Introduction**
	- Basic electronic structure and properties of manganites
- **Strained ultrathin films and nanostructures**
- \bullet **Anomalous low field magnetoresistance**
	- Results
	- Discussion
- **Anomalous anisotropic magnetoresistance**
	- Results
	- Discussion

Introduction

Manganites: known for the colossal magnetoresistance effect (CMR). (Chabara *et al*., APL **63**, 1990 (1993); Helmolt *et al*., PRL **71**, 2331 (1993); S. Jin et al., Science 1994)

• Metal-insulator transition: high T-insulator; low T-metal

• CMR occurs near ferromagnetic transition T_c as well as insulator to metal transition

• CMR occurs in high magnetic fields

Broad applications of GMR effect

Reason for CMR

 $\rule{1em}{0.15mm} \put(0,0){\line(0,1){1}} \put(0,0){\line(0,1){1}} \put(1,0){\line(0,1){1}} \put(1,0){\line(0,1){1}}$ transition temperature is shifted by magnetic fields

Crystal and electronic structure

Doping and double exchange

Mn

Mn

Mn

 (c)

Mn

La1-xCa ^xMnO 3

Doping creates Mn^{3+/}Mn⁴⁺ mixture → Double exchange interaction charge transfer results in FM

• undoped, superexchange, AF insulator

• doped to certain level, double exchange dominates, FM metal

Effective Hopping *t* ~cos(θ/2)

Phase diagram

AF: antiferromagnetic (more than one form) CAF: canted AF FI: ferromagnetic insulator FM: ferromagnetic metal CO: charge ordering phase

S. Choeng, Rutgers

Doping and electronic band structure

Two key parameters in the band structure (single electron band):

Band filling and band width

Doping element Sr, Ca, Ba, Pb…

```
⇒ carrier concentration
```
Doping elements La, Pr, Nd, Sm… ⇒ **band width**

Ionic radii of the dopant (tolerance factor)

[⇒]**lattice distortion from cubic and bond angle**

⇒ **electronic band structure**

Charge and Orbital ordering

- • Collective Jahn-Teller effect
- Spin order
- •**Strong electron** correlation: charge order
- \bullet Intersite exchange between e_g orbitals

Y. Tokura

Competing interactions

- superexchange, AF
- double exchange (superexchange), FM
- electron-electron interaction, charge order
- Jahn-Teller and intersite orbital interaction
- electron-lattice (mainly through Jahn-Teller phonon)

Lattice, spin, and charge degree of freedom are all strongly coupled.

Or one view: multicritical feature.

Strong coupling of lattice, spin, and charge

Long range and local ordering: phase separation scenario

- \bullet Doping of different elements on A site causes random distribution of ion of different radii: a form of disorder
- \bullet Complete ordered distribution of dopant: phase fluctuation

Result:

Electronic phase separation.

Our work

Introducing lattice distortion

Sample Structures

<u>Sample</u>: $Pr_{2/3}Sr_{1/3}MnO_3(LCMO, LSMO)$ film d ~50 - 150 Å Lattice parameters: ~ 3.856 Å **Substrates**: $\rm SrTiO_{3}\left(STO\right)$ (100), a=3.90 Å NdGaO₃ (NGO) (110), a~3.85 Å, b~3.86 Å

LaAlO $_3\;$ (LAO) (100), a=3.79 Å

Film Preparation

 \bullet *Method:* pulsed laser deposition (PLD), max E ~1J/pulse, 20ns

Structures

Thin films are coherently strained up to ~ 40 nm on SrTiO $_3$ substrate. And up to ~ 150 nm on LAO substrate.

Cross section view

Low-field MR as a function of field

 $MR > 1000\%$ (comparing largest GMR \sim 150 % in metallic multilayers)

Low-field MR hysteresis

Comparison for different strains

Strain Effect on LFMR

Magnetization curves of ultrathin PSMO films

Strain induced anisotropy dominates.

MFM domain image

LSMO/LAO 1500 Å, ZFC, 5 μ x 5 μ scan:

Domain width decreases with thickness.

Domain stripes can be aligned with an in-plan field.

Temperature Dependence of the Domain Wall Resistance

Discussion

Bloch or Neel wall

 \bullet It is known theoretically and experimentally, magnetic domain wall resistance is normally negligible (Cabrera and Falicov,1974)

• Only when Fermi wavelength (scattering length) is larger than the wall width, spin reflection (resistance) can occur.

This is not possible for manganites since mean free path is \sim A

Conventional ferromagnet

- •Largest reported in Co film with stripe domain, DWR $\sim 8\%$ (Viret, PRL, 2001)
- Theory based on majority and minority channel mixing+impurity scattering (Zhang and Levy 1997)

This model cannot be applied directly to manganites as double exchange prohibits mixing. Our DWR is too large to be explained.

Double exchange model

• Anisotropy energy $k \sim 1.5$ mev/nm², exchange constant $J \sim 2.5$ mev

 \Rightarrow Domain wall width ~ 8 nm (20 atoms)

 $R_{DW}/R \sim 1/cos(\theta/2) \sim 1.003$, DWR ~ 0.3 % (P. Littlewood et al., JAP, 1999)

Cannot explain the result

Possible explanation

Mathur and Littlewood (2001): phase separation in strained samples (self organized structures).

D. Golosov (PRB 67, 064404 (2003) calculated domain wall in double exchange system, suggested 3 types of domain walls, Block, abrupt, and stripe walls, and our sample may have stripe wall.

Stripe wall: domains are separated by an AF insulating phase (charge ordering phase)

Reason for large DWMR:

- •Spin polarized tunneling across the stripe walls
- • or melting of charge ordering phase when the domains are aligned

Manganites are half metal $p \sim 1$

Therefore largest TMR is expected.

DWR for different doping

Large DWR is observed in compressive strained PSMO thin films, and the DWMR is larger for smaller Sr doping x. For x=0.2, DWMR~3000% !

Nano-bridges

- To understand the observed large LFMR and DWR, measurements across a small number of domain walls are necessary.
- \bullet Sharp switching of MR may be obtained in small size sample which contains a few domains.

Discussion

- Manganite nanostructures maintain the LFMR and DWR properties, but show nonlinear I-V behaviors;
- Nonlinear I-V curves can be fitted very well by Simmons tunneling model;
- There are internal phase separation in the sample as well as at the domain walls;
- The reduced tunneling barrier height in the magnetic field may indicate the melting of the AFM phase at the domain wall in the sample.

Anisotropic magnetoresistance

- Tool to probe intrinsic anisotropic energy
- To study spin-orbital coupling
- Used in sensors

In manganite single crystals, AMR (crystalline) is negligible.

Summary

- Large low field magnetoresistance in compressively strained ultrathin films and nanostructures with unconventional domain walls (possibly stripe walls).
- Very large anisotropic magnetoresistance associated with Jahn-Teller type lattice distortion.
- Small change in lattice can result in dramatic changes in magnetic and transport properties.